Localization in *trans,trans*-[(tpy)(Cl)₂Os^{III}(N₂)Os^{II}(Cl)₂(tpy)]⁺ (tpy = 2,2':6',2''-Terpyridine)

Konstantinos D. Demadis, Thomas J. Meyer,* and Peter S. White

Department of Chemistry, Venable and Kenan Laboratories CB# 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290

Received July 18, 1997

In the mixed-valence chemistry of $d\pi^5 - d\pi^6$ ligand-bridged complexes based on Fe, Ru, and Os there are localized and delocalized examples in closely related coordination environments e.g. $[(NH_3)_5Ru^{III}(4,4'-bpy)Ru^{II}(NH_3)_5]^{5+1}$ (4,4'-bpy is 4,4'-bipyridine) and $[(NH_3)_5Os^{II.5}(N_2)Os^{II.5}(NH_3)_5]^{5+.2}$ There is also growing evidence for a class of molecules that exist at the localized-to-delocalized transition for which an appropriate description of electronic structure and coupling to the surrounding molecular vibrations and solvent is complicated. Examples are $[(NH_3)_5Ru^{III}(pz)Ru^{II}(NH_3)_5]^{5+3}$ and cis- $[(bpy)_2ClOs^{III}(pz) Ru^{II}(NH_3)_5]^{4+}$ (pz is pyrazine, bpy is bipyridine).⁴ In previous examples, with N₂ as bridge, $[(NH_3)_5M(N_2)M(NH_3)_5]^{5+}$ (M = Ru, Os),² [(CH₃CN)(NH₃)₄Os(N₂)Os(NH₃)₄(CH₃CN)]^{5+,5} and $[Cl(NH_3)_4Os(N_2)Os(NH_3)_4Cl]^{3+}$,⁶ evidence for strong electronic coupling and the oxidation state description MII.5-MII.5 has been found. For example, in $[(NH_3)_5Ru(N_2)Ru(NH_3)_5]^{5+}$, $[Cl(NH_3)_4$ -Os(N2)Os(NH3)4Cl]3+, and [(CH3CN)(NH3)4Os(N2)Os(NH3)4- (CH_3CN) ⁵⁺, there is no $\nu(N \equiv N)$ stretch in the infrared. In the structure of the latter, as determined by X-ray crystallography, there are equivalent coordination environments at the two Os's. We report here that oxidation states are localized in $trans, trans-[(tpy)(Cl)_2Os^{II}(N_2)Os^{II}(Cl)_2(tpy)]^+ (tpy = 2,2':6',2''$ terpyridine) and that the ion is at the localized to delocalized transition.

Following the work of Che⁵ and Taube,⁷ we have prepared *trans,trans*-(tpy)(Cl)₂Os^{II}(N₂)Os^{II}(Cl)₂(tpy) (**2**) in 70% yield by 1-electron reduction and coupling of *trans*-[Os^{VI}(tpy)(Cl)₂(N)]⁺ (**1**)⁸ by using HS⁻ or Et₃N in MeCN or CH₂Cl₂,⁹

$$2[Os^{VI}(tpy)(Cl)_2(N)]^+ + 2e^- \rightarrow 1$$

$$(tpy)(Cl)_2Os^{II}(N_2)Os^{II}(Cl)_2(tpy) (1)$$
2

2 can also be prepared by electrochemical reduction at -0.36

- (a) Tom, G. M.; Creutz, C.; Taube, H. J. Am. Chem. Soc. 1974, 96, 7828. (b) Sutton, J. E.; Sutton, P. M.; Taube, H. Inorg. Chem. 1979, 18, 1017. (c) Hupp, J. T.; Dong, Y.; Blackbourn, R. L.; Lu, H. J. Phys. Chem. 1993, 97, 3278.
- (2) (a) Richardson, D. E.; Sen, J. P.; Buhr, J. D.; Taube, H. *Inorg. Chem.* 1982, 21, 3136. (b) Dubicki, L.; Ferguson, J.; Krautz, E. R.; Lay, P. A.; Maeder, M.; Magnuson, R. H.; Taube, H. *J. Am. Chem. Soc.* 1985, 107, 2167.
- (3) (a) Creutz, C.; Taube, H. J. Am. Chem. Soc. 1969, 91, 3988. (b) Creutz, C.; Taube, H. J. Am. Chem. Soc. 1973, 95, 1086. (c) Creutz, C. Prog. Inorg. Chem. 1983, 31, 1.
- (4) (a) Hupp, J. T.; Neyhart, G. A.; Meyer, T. J. J. Am. Chem. Soc. 1986, 108, 5349. (b) Neyhart, G. A.; Timpson, C. J.; Bates, W. D.; Meyer, T. J. J. Am. Chem. Soc. 1996, 118, 3730.
- (5) Che, C.-M.; Lam, H.-W.; Tong, W.-F.; Lai, T.-F.; Lau, T.-C.; J. Chem. Soc., Chem. Commun. 1989, 1883.
- (6) Magnuson, R. H.; Taube, H. J. Am. Chem. Soc. 1972, 94, 7213.
- (7) Ware, D. C.; Taube, H. Inorg. Chem. 1991, 30, 4605.
- (8) Williams, D. S.; Coia, G. M.; Meyer, T. J. Inorg. Chem. 1995, 34, 586.
- (9) Anal. Calc for $Os_2Cl_4N_8C_{30}H_{22}$ ·2DMF (2, MW 1162.9): C, 37.15; H, 3.10; N, 12.04. Found: C, 37.24; H, 3.04; N, 13.90. UV-vis (DMF) $[\lambda_{max}, nm (\epsilon, M^{-1} cm^{-1})]$: 272 (48 800), 332 (46 600), 364 (16 400), 394 (13 000), 444 (10 800), 592 (16 000), 660 (14 500), 885 (9100). Infrared (cm^{-1}, KBr disks): $\nu(N\equiv N) 2035$ (vw); $\nu(^{15}N\equiv^{15}N)$ 1972 (vw); $\nu(tpy)$ 1448 (vs), 1435 (vs), 1383 (vs).

V *vs* SSCE (n = 1) with 0.1 M in [N(n-Bu)₄](PF₆) in CH₃CN. Subsequent oxidation by ferrocenium or I₂ gave the mixedvalence form (**3**) which was isolated in 60–70% yield and characterized as the BF₄⁻ salt.¹⁰

$$trans, trans-(tpy)(Cl)_2Os^{II}(N_2)Os^{II}(Cl)_2(tpy) + Fc^+ \rightarrow 2$$
$$trans, trans-[(tpy)(Cl)_2Os^{III}(N_2)Os^{II}(Cl)_2(tpy)]^+ + Fc (2)$$

In cyclic voltammograms of **2** in DMF, reversible Os^{III}–Os^{II}/Os^{III}–Os^{II} and Os^{III}–Os^{III}/Os^{III}–Os^{II} couples appear at +0.21 and +0.77 V *vs* SSCE ($\Delta E_{1/2} = 560$ mV). For **2** a very weak $\nu(N \equiv N)$ stretch appears at 2035 cm⁻¹ in KBr ($\nu(^{15}N \equiv ^{15}N)$) at 1972 cm⁻¹). An intense $\nu(N \equiv N)$ stretch for **3** appears at 2007 cm⁻¹ in KBr ($\nu(^{15}N \equiv ^{15}N)$) at 1942 cm⁻¹). In CD₃CN $\nu(N \equiv N)$ appears at 2012 cm⁻¹ ($\epsilon = 1220$ M⁻¹ cm⁻¹).

The appearence of the intense $\nu(N \equiv N)$ stretch in 3 points to a redox asymmetry across the μ -N₂ bridge. This is supported by the X-ray structure in Figure 1.¹¹ Important features in the structure include the nearly staggered tpy ligands with a dihedral angle of $\sim 74^{\circ}$ and the bent N₂ bridge with Os(1)-N(1)-N(2) and Os(2)-N(2)-N(1) angles of 171.5(9) and 172.1(9)°, respectively. The Os(1)····Os(2) distance is 4.9726(7) Å. The N(1)-N(2) bond length is 1.132(13) Å, slightly longer than that of free N₂ (1.0976(2) Å).¹² The Os-N(bridge) bond lengths are not equivalent (Os(1)-N(1) 1.968(9) Å and Os(2)-N(2))1.909(10) Å). Furthermore, there are two distinct sets of Os-Cl bond lengths. There are "short" bond lengths, Os(1)-Cl(1)2.352(3) Å and Os(1)-Cl(2) 2.371(3) Å, consistent with Os^{III}-Cl¹³ and "long" bond lengths, Os(2)-Cl(3) 2.401(3) Å and Os-(2)-Cl(4) 2.402(3) Å, consistent with Os^{II} -Cl.¹⁴ The BF₄⁻ counterion is located 6.22 Å from Os(1) and 6.74 Å from Os-(2). The structural evidence supports localized Os^{III} (Os(1)) and Os^{II} (Os(2)) on the basis of the Os-Cl bond lengths and

- (10) Anal. Calc for Os₂Cl₄F₄BN₈C₃₀H₂₂ (3, MW 1103.0): C, 32.64; H, 2.00; N, 10.15. Found: C, 32.55; H, 2.63; N, 9.96. UV−vis (MeCN) [λ_{max}, nm (ε, M⁻¹ cm⁻¹)]: 234 (62 800), 270 (47 900), 282 (35 100), 322 (43 300), 480 (10 200), 506 (11 200), 678 (3800), 840 (3600). Infrared (cm⁻¹, KBr disks): ν(N≡N) 2007 (vs); ν(¹⁵N≡¹⁵N) 1942 (vs); ν(tpy) 1451 (vs), 1439 (s), 1391 (vs).
- (11) Crystals of *trans*, *trans*-[(tpy)(Cl)₂Os^{II}(N₂)Os^{II}(Cl)₂(tpy)](BF₄)·DMF·H₂O (3) were grown by vapor diffusion of Et₂O into a 10:1 MeCN–DMF solution of the salt. They are triclinic, space group *P*I, with *a* = 8.6350(1) Å, *b* = 14.1004(2) Å, *c* = 16.0212(1) Å, α = 103.328(1)°, β = 93.209(1)°, γ = 96.412(1)°, *V* = 1879.53(4) Å³, *Z* = 2, fw = 1192.66, *d*_{calc} = 2.107 g/cm³, and μ = 7.10 mm⁻¹. Intensity data were collected at -150 °C on a Siemens CCD SMART diffractometer with Mo Kα radiation and a graphite monochromator using the *θ*-2*θ* scan technique. A total of 6652 unique reflections were measured, with 4126 having *I* > 2.5σ(*I*) used in the structure refinement by full-matrix least-squares techniques (497 parameters). Final *R_f* = 0.048, *R_w* = 0.039, and GoF = 1.28 (for all reflections, *R_f* = 0.106, *R_w* = 0.053). NRCVAX was used as the software package. Full details can be found in the Supporting Information.
- (12) Wilkinson, P. G.; Houk, N. B. J. Chem. Phys. 1956, 24, 528.
- (13) Os^{III}-Cl bond lengths: 2.34-2.36 Å. Champness, N. R.; Levason, W.; Pletcher, D.; Spicer, M. D.; Webster, M. J. Chem. Soc., Dalton Trans. 1992, 2201.
- (14) Os^{II}-Cl bond lengths: 2.43-2.45 Å. Levason, W.; Champness, N. R.; Webster, M. Acta Crystallogr. **1993**, C49, 1884.

Figure 1. ORTEP diagram (30% probability ellipsoids) of the cation in *trans,trans*-[(tpy)(Cl)₂Os^{III}(N₂)Os^{II}(Cl)₂(tpy)](BF₄)·DMF·H₂O (3). Important bond lengths (Å) and angles (deg): N(1)–N(2) 1.132(13), Os(1)····Os(2) 4.9726(7), Os(1)–N(1) 1.968(9), Os(1)–Cl(1) 2.352-(3), Os(1)–Cl(2) 2.371(3), Os(1)–N(11) 2.084(9), Os(1)–N(17) 1.996-(9), Os(1)–N(23) 2.084(10), Os(2)–N(2) 1.909(10), Os(2)–Cl(3) 2.401(3), Os(2)–Cl(4) 2.402(3), Os(2)–N(31) 2.064(9), Os(2)–Cl(3) 2.006(9), Os(2)–Cl(4) 2.087(10); Os(1)–N(1)–N(2) 171.5(9), Os(2)–N(2)–N(1) 172.1(9), Cl(1)–Os(1)–Cl(2) 177.6(1), Cl(3)–Os(2)–Cl(4) 179.0(1), N(11)–Os(1)–N(23) 159.4(4), N(31)–Os(2)–N(43) 157.9(4).

counterion placement in the lattice. The $Os^{II}_2 - N(bridge)$ bond length is shorter than $Os^{III}_1 - N(bridge)$ because of $Os^{II} - N$ backbonding.¹⁵

The redox asymmetry in the solid state is maintained in solution as shown by the appearence of $\nu(N=N)$ at 2012 cm⁻¹. The near-infrared (NIR) spectrum of **3** in CD₃CN is dominated by intense bands at 3150 nm (3175 cm⁻¹; $\epsilon = 6400 \text{ M}^{-1} \text{ cm}^{-1}$; $\Delta \bar{\nu}_{1/2} = 500 \text{ cm}^{-1}$; 3050 cm^{-1} in KBr) and 2119 nm (4720 cm⁻¹; $\epsilon = 2600 \text{ M}^{-1} \text{ cm}^{-1}$; $\Delta \bar{\nu}_{1/2} = \sim 400 \text{ cm}^{-1}$; 4630 cm^{-1} in KBr). Additional features appear at 1905 nm (5250 cm⁻¹; $\epsilon = 1200 \text{ M}^{-1} \text{ cm}^{-1}$), 1512 nm (6610 cm⁻¹; $\epsilon = 230 \text{ M}^{-1} \text{ cm}^{-1}$), and $\sim 1000 \text{ nm} (\sim 10000 \text{ cm}^{-1})$. On the basis of a previous analysis¹⁶ three intervalence transfer (IT) bands and two interconfigurational $d\pi \rightarrow d\pi$ bands are expected for a localized structure. In *trans*-[Os^{III}(tpy)(Cl)₂(CH₃CN)]⁺ $d\pi \rightarrow d\pi$ bands appear at 2457 nm (4070 cm⁻¹; $\epsilon = 65 \text{ M}^{-1} \text{ cm}^{-1}$) and 1486 nm (6730 cm⁻¹; $\epsilon = 123 \text{ M}^{-1} \text{ cm}^{-1}$) in CD₃CN.¹⁷ We tentatively assign the intense bands to IT(1) and IT(2) and the

- (15) (a) Henderson, R. A.; Leigh, G. J.; Pickett, C. J. Adv. Inorg. Chem. Radiochem. 1983, 27, 197. (b) Hidai, M.; Mizobe, Y. Chem. Rev. 1995, 95, 1115.
- (16) Kober, E. M.; Goldsby, K. A.; Narayana, D. N. S.; Meyer, T. J. J. Am. Chem. Soc. 1983, 105, 4303.
- (17) Demadis, K. D.; Meyer, T. J. Manuscript in preparation.

remaining features to a combination of $d\pi \rightarrow d\pi$ and IT(3). On the basis of the analysis of Hush,^{18ab} the resonance energy arising from donor-acceptor orbital mixing is given by

$$H_{\rm DA} = ((4.2 \times 10^{-4}) \epsilon_{\rm max} \Delta \bar{\nu}_{1/2} E_{\rm op}/d^2)^{1/2}$$

(ϵ_{max} is the molar extinction coefficient at the maximum in M⁻¹ cm⁻¹, $\Delta \bar{\nu}_{1/2}$ is the bandwidth at half-height in cm⁻¹, E_{op} is the absorption maximum in cm⁻¹, and *d* is the metal–metal distance in Å.^{18c} H_{DA} is 414 cm⁻¹ for IT(1) and 289 cm⁻¹ for IT(2). The NIR band energies are the same within experimental error in CD₃NO₂, CD₃CN, and (CD₃)₂SO. By comparison, the lowest-lying Os^{II} \rightarrow tpy metal-to-ligand charge transfer band is somewhat solvent dependent with $\lambda_{\text{max}} = 850$ nm (CD₃NO₂), 840 nm (CD₃CN), and 850 nm ((CD₃)₂SO).

The available evidence places 3 at the transition between the limiting localized and delocalized descriptions for class II and class III in the Robin-Day scheme.¹⁹ On the basis of the magnitude of $\Delta E_{1/2}$ (=560 mV), there appears to be medium to strong electronic coupling. There are trapped oxidation states from the structural data and a residual intramolecular barrier to electron transfer arising from low energy Os-Cl, Os-N vibrations. Given the narrow IT bands and the absence of a solvent dependence, intramolecular $Os^{II} \rightarrow Os^{III}$ electron transfer is apparently more rapid than the solvent reorientation time of \sim 1 ps and the solvent does not contribute to the barrier.²⁰ With $E(\text{IT}_1) \sim 2H_{\text{DA}}(1) + \lambda_i, \lambda_i \sim 2350 \text{ cm}^{-1}$. λ_i is the intramolecular reorganizational energy. On the basis of this analysis, the classical energy of activation for the lowest energy electron transfer pathway corresponding to IT(1)^{4b,16} is $E_a \sim \lambda_i/4 \sim 590$ cm^{-1} .

Acknowledgments are made to the National Science Foundation under Grant Nos. CHE-9503738 and CHE-9321413 and to Dr. Gary Enright for X-ray data collection on **3**.

Supporting Information Available: Text giving experimental procedures for the preparation and characterization of the compounds, IR and NIR spectra, details of the crystallographic analysis of *trans,trans-*[(tpy)(Cl)₂Os^{III}(N₂)Os^{II}(Cl)₂(tpy)](BF₄)•DMF•H₂O (**3**), a fully labeled ORTEP diagram as well as a packing diagrams, and tables of atomic coordinates, isotropic thermal parameters, and bond distances and angles (15 pages). Ordering information is given on any current masthead page.

IC970885O

- (19) Robin, M. B.; Day, P. Adv. Inorg. Chem. Radiochem. 1967, 10, 247.
- (20) (a) Barbara, P. F.; Jarbeda, W. Adv. Photochem. 1990, 15, 1. (b) Maroncelli, M. J. Mol. Liq. 1993, 57, 1.

^{(18) (}a) Hush, N. S. Prog. Inorg. Chem. 1967, 8, 391. (b) Creutz, C.; Newton, M. D.; Sutin, N. J. Photochem. Photobiol. A: Chem. 1994, 82, 47. (c) The charge transfer distance used in this analysis, 4.97 Å, was taken from the crystal structure.